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What is constrained diffusion?



Constrained Diffusion Models: 
Methods



How to define a forward noising process that stays 
in the polytope?
Two basic approaches:

1. Warping methods: change the 
geometry by warping space so that 
we never hit the boundary.

2. Reflected methods: leave the 
geometry as is and whenever we 
would hit the boundary we reflect  

A note: the theory is better developed for barrier approaches than reflected methods. 
Most of the novel theory we develop is in the reflected methods.
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The recipe for a continuous diffusion model
1. A forward noising process converging to an invariant distribution

○ Both noising processes will converge to the uniform distribution over the 
compact set represented by the constraints

2. A time reversal giving a corresponding reverse process
○ This follows from Lee & Vempala (2017), Theorem 23 for the barrier approach.
○  We prove this by techniques from Petit (1997) and Haussman & Pardoux (1986).

3. A score matching loss
○ We prove the validity of the implicit score matching loss in the constrained 

domain under a Neumann boundary condition.

4. A discretization which converges to the continuous time forward/reverse processes in 
the limit of small step sizes



For the log-barrier approach our discretization is a Geodesic Random Walk on the Hessian 
manifold induced by a logarithmic barrier function. But since we do not have explicit 
access to the exponential we have to rely on a retraction, which is linearizes the geodesic.

Discretization: Log-Barrier Approach

Simplex Hypercube



Discretization: Reflected Approach
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Constrained Diffusion Models: 
Applications



Applications for constrained diffusion models

1. Mixtures of Gaussians in hypercubes and simplices: 
We investigate performance on a set of synthetic distributions on hypercubes and 
simplices in various dimensions.

2. Robotic arms under manipulability constraints: 
When planning the trajectory of a robotic arm we often want to ensure the arm can 
manipulate certain areas as it moves. We model this as a 2D position and an ellipse 
representing the target manipulation area.

3. Modeling protein chains with fixed end points: 
Cyclic peptides and antibody loop structures represent very important clinical targets 
for generative protein modeling. Both of these are essentially chains with fixed 
endpoints, and we can model this as a product of a polytope and a torus.
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Learning Synthetic Experiments



Learning Synthetic Experiments in Higher Dimensions



Learning Synthetic Experiments in Higher Dimensions



Generating Conformations of Cyclic Peptides



Generating Conformations of Cyclic Peptides



My contributions to this work

● I proposed and initially conceived of this work, including both 
methods we developed here, and wrote all of the code for the 
implementations. 

● Valentin de Bortoli was mainly responsible of the technical proofs, 
though we discussed it at length and I reviewed all proofs. 

● Leo Klarner was responsible for setting up the data for the 
experiments. 

● Emile and Michael provided guidance throughout, and wrote the 
codebase which facilitated extending our methods to Riemannian 
manifolds.



Problems and Follow-up Work
There are three major issues with the approaches here:

1. Both approaches are quite slow even in low dimensions when compared to 
unconstrained diffusion models, and they scale terribly as dimension grows.

2. As seen in the loops case there is considerable work to be done in improving learning 
dynamics using these methods.

3. Unconstrained diffusion models lead to better results, contrary to expectations about 
incorporating prior information.



Problems and Follow-up Work
Two follow up papers address these issues in different ways:

  Warping methods: Liu, G.H., Chen, T., Theodorou, E. and Tao, M., 2024. Mirror diffusion models for 
constrained and watermarked generation. NeurIPS, 36.

Reflected methods: Fishman, N., Klarner, L., Mathieu, E., Hutchinson, M. and De Bortoli, V., 2024. Metropolis 
sampling for constrained diffusion models. NeurIPS, 36.

1. The computational issues are completely resolved by these new approaches.
2. The training dynamics are significantly improved for both these methods.
3. The warping methods exploit the performance of Euclidean models to do well, so 

assuming there is not significant mass near the boundary these methods should do 
very well. Reflected methods lag behind, but generalize to manifold geometries in 
more straightforward ways.
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Implicit Score Matching




