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Constrained Diffusion Models:
Methods



How to define a forward noising process that stays
in the polytope? -

Unconstrained

Two basic approaches:

Log-barrier
Reflected

1. Warping methods: change the
geometry by warping space so that
we never hit the boundary.

2. Reflected methods: leave the
geometry as is and whenever we
would hit the boundary we reflect

A note: the theory is better developed for barrier approaches than reflected methods.
Most of the novel theory we develop is in the reflected methods.
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The recipe for a continuous diffusion model

1. A forward noising process converging to an invariant distribution
o Both noising processes will converge to the uniform distribution over the
compact set represented by the constraints

2. A time reversal giving a corresponding reverse process
o This follows from Lee & Vempala (2017), Theorem 23 for the barrier approach.
o  We prove this by techniques from Petit (1997) and Haussman & Pardoux (1986).

3. A score matching loss
o We prove the validity of the implicit score matching loss in the constrained
domain under a Neumann boundary condition.

4. A discretization which converges to the continuous time forward/reverse processes in
the limit of small step sizes



Discretization: Log-Barrier Approach

For the log-barrier approach our discretization is a Geodesic Random Walk on the Hessian
manifold induced by a logarithmic barrier function. But since we do not have explicit
access to the exponential we have to rely on a retraction, which is linearizes the geodesic.

Simplex Hypercube

Algorithm 1 Geodesic Random Walk.

Require: T, N, X/ ,b
vy=T/N
for k€ {0,...,N—1} do
Zi1 ~ N(0,1d)
Wit1 = vb(kv, X) + /Y Zk+1
X1, = expx, [Wry1] = projy (Xx + Wiy1)
return { X}




Discretization: Reflected Approach

Algorithm 2 Reflected step algorithm. The algorithm operates by repeatedly taking geodesic steps until one
of the constraint is violated, or the step is fully taken. Upon hitting the boundary we parallel transport the
tangent vector to the boundary and then reflect it against the boundary. We then start a new geodesic from
this point in the new direction. The arg intersect; function computes the distance one must travel along a
geodesic in direction s til constraint f; is intersected. For a discussion of paralleltransport, exp, and reflect
please see Appendix B
Require: z € M, v € T, M, {fi}iez
L |lvllg
s < v/|v|,
while £ > 0 do
d; = arg intersect, [expg(x,ts), f,]
i < argmin; d; s.t. d; >0
a « min(d;,£)
' < exp,(z, as)
s ¢ paralleltransport(z, s, 2”)
s « reflect(s, f;)
L+—Ll—a
Tz
return =

Algorithm 3 Reflected Random Walk. Discretisation of the SDE dX,; = b(t, X;)dt + dB; — dk;.

Require: T, N, X/, {fi}icz
y=T/N
for k€ {0,...,N—1} do
Zi+1 ~ N(0,1d)
X[, = ReflectedStep[ X, /7 Zk+1,{fi }iez]
return {X;},




Invariant Distribution

Log Barrier Forward Process
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Constrained Diffusion Models:
Applications



Applications for constrained diffusion models

1. Mixtures of Gaussians in hypercubes and simplices:
We investigate performance on a set of synthetic distributions on hypercubes and
simplices in various dimensions.



Applications for constrained diffusion models

2. Robotic arms under manipulability constraints:
When planning the trajectory of a robotic arm we often want to ensure the arm can
manipulate certain areas as it moves. We model this as a 2D position and an ellipse
representing the target manipulation area.



Applications for constrained diffusion models

3. Modeling protein chains with fixed end points:
Cyclic peptides and antibody loop structures represent very important clinical targets
for generative protein modeling. Both of these are essentially chains with fixed
endpoints, and we can model this as a product of a polytope and a torus.



Learning Synthetic Experiments

Data Log-barrier = Reflected Log-barrier = Reflected

(a) 2D square data. (b) 2D Dirichlet data.

Figure 4.1: Histograms of samples from the data distribution and from trained constrained

diffusion models.



Learning Synthetic Experiments in Higher Dimensions

Table 4.1: MMD metrics between samples from synthetic distributions and trained con-
strained and unconstrained (Euclidean) diffusion models. Means and confidence intervals

are computed over 5 different runs.

Log-barrier Reflected Euclidean
Space d
MMD % in M MMD % in M MMD % in M
2 .066+.006 100.0 .055+.015 100.0 .062+.011 98.8
-1, 1]d 3 .209+.077 100.0 .080+.004 100.0 .076+.004 98.5
10 .330+.004 100.0 .313+.048 100.0 .081+.005 96.4
2 .050+.012 100.0 .043+.002 100.0 .055+.013 96.4
A 3 .238+.009 100.0 .181+.007 100.0 .068+.014 96.3

10 .275+.015 100.0 .290+.009 100.0 .060+.003 92.6




Learning Synthetic Experiments in Higher Dimensions

(a) Samples from the (b) Samples from our (c) Samples from our  (d) Samples from the

data distribution. log-barrier diffusion. reflected diffusion. uniform distribution.

Figure 4.2: Samples in 5% | x R? from (a) the data distribution, (b) our log-barrier diffusion
model, (c) our reflected diffusion model and (d) the uniform distribution. Each sample is
visualised as the manipulability ellipsoid encoded by the SPD matrix M € S placed at

the corresponding location in R2.



Generating Conformations of Cyclic Peptides

(a) An illustrative diagram of the parameteri-
sation used for the conformational modelling
of the C, trace of a cyclic peptide, intro-
duced in Han and Rudolph [2006].

(b) The convex polytope constraining the
diagonals of the triangles for the given bond
lengths in the illustrated molecule. The total
design space is the product of this polytope
with the 4D flat torus.



Generating Conformations of Cyclic Peptides

(a) Samples from the (b) Samples from our (c) Samples from our (d) Samples from the

data distribution. log-barrier diffusion. reflected diffusion. uniform distribution.

Figure 4.4: Planar projection of the modelled C, chains from (a) the training dataset,
(b) our log-barrier diffusion model, (c) our reflected diffusion model and (d) the uniform

distribution. Additional results and full correlation plots are postponed to Appendix C.3.3.



My contributions to this work

e [ proposed and initially conceived of this work, including both
methods we developed here, and wrote all of the code for the
implementations.

e Valentin de Bortoli was mainly responsible of the technical proofs,
though we discussed it at length and I reviewed all proofs.

e Leo Klarner was responsible for setting up the data for the
experiments.

e Emile and Michael provided guidance throughout, and wrote the
codebase which facilitated extending our methods to Riemannian
manifolds.



Problems and Follow-up Work

There are three major issues with the approaches here:

1. Both approaches are quite slow even in low dimensions when compared to
unconstrained diffusion models, and they scale terribly as dimension grows.

2. Asseen in the loops case there is considerable work to be done in improving learning
dynamics using these methods.

3. Unconstrained diffusion models lead to better results, contrary to expectations about
incorporating prior information.



Problems and Follow-up Work

Two follow up papers address these issues in different ways:

Warping methods: Liu, G.H., Chen, T., Theodorou, E. and Tao, M., 2024. Mirror diffusion models for
constrained and watermarked generation. NeurIPS, 36.

Reflected methods: Fishman, N., Klarner, L., Mathieu, E., Hutchinson, M. and De Bortoli, V., 2024. Metropolis
sampling for constrained diffusion models. NeurIPS, 36.

1. The computational issues are completely resolved by these new approaches.

The training dynamics are significantly improved for both these methods.

3. The warping methods exploit the performance of Euclidean models to do well, so
assuming there is not significant mass near the boundary these methods should do
very well. Reflected methods lag behind, but generalize to manifold geometries in
more straightforward ways.

™



Appendix



Log-Barrier



Barrier Langevin Dynamics. Barrier methods work by constructing a smooth potential ¢ : M — R such
that it blows up on the boundary of a desired set, see Nesterov et al. (2018). Such potentials are at the basis
of interior methods in optimisation Boyd et al. (2004). Among these functions, the logarithmic barrier is
the most popular among practitioners (Lee & Vempala, 2017). For a convex polytope M defined by the
constraints Az < b, the logarithmic barrier is given for any x € M by

¢(z) = — 3232, log((Ai, z) — bi). (2.1)

Assuming that ||A;|| = 1, we have that for any z € M, ¢(z) = = .~ log(d(z,dM,)), where OM,; = {z €
R? : (A;, ) = b}.



Assuming ¢ to be strictly convex and smooth its Hessian V2¢ is positive definite thus it defines a valid
Riemannian metric. The formal approach to 'warping the geometry’ of the convex space with the boundary
is to endow that space with the Hessian as a Riemannian metric g = V2¢, making it into a Hessian Manifold.
Using the barrier in equation 4, we have that

g(z) = ATS72(2)A with S(z) = diag(b; — (As, z))s

log(det(g)) log(det(g))

000000

—0.050

-0.075




We can now define the forward process as the following Langevin dynamics as proposed by Lee & Vempala
(2017)

dX; = 1div(g~!)(X,)dt + g(X:)~2dBy, (2.2)

with div(F)(z) £ (div(Fy)(z), ...,div(Fs)(z)) ", for any smooth F : R¢ — R?. Denoting p; the density of
X;, we have that 9;p; = Tr(g~1V?p;). Hence, assuming that M is compact, the uniform distribution on M,
is the invariant measure and we have that the distribution of (X;);>¢ converges exponentially fast towards
the uniform, see Lee & Vempala (2017, Theorem 23).



Time-reversal. Assuming that g—! and its derivative are bounded on M, the time-reversal

of (2.2) is given by Cattiaux et al. [2021], in particular we have

dX, = [~1div(g™!) + div(g~)+g~'V logpr_)(X,)dt + 9(X,)~2dB,,
= [Ldiv(g™) + g~V iogpr_] (X,)dt + g(X,)~2dB.. (2.3)

io is initialised with the uniform distribution on M (which is close to the one of X+ for

large T).



Reflected



Skorokhod problem. The reflected Brownian motion is defined as the solution to the Skorokhod problem.
We say that (B, k¢)¢>0 is a solution to the Skorokhod problem (Skorokhod, 1961) if (k¢)¢>0 is a bounded
variation process and (B;):>0 a continuous adapted process such that for any ¢ > 0,

Bt =Bo+B;: —k; € M, (2.4)

and |k|, = fot 1 conmdlkl,, ke = fo B,)d[k|,, where (|k|,)¢>0 is the total variation of (k;)¢>¢. The condition
k|, = fo 15 _cormdlk|, can be interpreted as k; being constant when (B;);>o does not hit the boundary.

When (Bt)tZO hits the boundary, the condition k; = fo B;)d|k|,, tells us that —k; “compensates” for B,
by pushing the process back into M along the inward normal —n. As a result (]_3t)t20 can be understood as
the continuous-time counterpart to the reflected Gaussian random walk. The process (k;);>0 can be related
to the notion of local time (Revuz & Yor, 2013) and quantify the amount of time (B;);>o spends at the
boundary dM. Lions & Sznitman (1984, Theorem 2.1) ensure the existence and uniqueness of a solution to
the Skorokhod problem. One key observation is that the event {B; € M} has probability zero (Harrison &
Williams, 1987, Section 7, Lemma 7). As in the unconstrained setting, one can describe the dynamics of the
density of B;.



Proposition 2.2.1(Burdzy et al. (2004)). For any t > 0, the distribution of B, admits a density w.r.t. the
Lebesgue measure denoted p;. In addition, we have for any z € int(M) and xo € OM

Ope(x) = 3Ap(x), Onpi(z0) =0, (2.5)
where we recall that n is the outward normal.

Note that contrary to the unconstrained setting, the heat equation has Neumann boundary conditions.
Similarly to the compact Riemannian setting Saloff-Coste (1994) it can be shown that the reflected Brownian
motion converges to the uniform distribution on M exponentially fast (Loper, 2020), see Figure 5. Hence,
(B¢)s>0 is a candidate for a forward noising process in the context of diffusion models.



Time-reversal. In order to extend the diffusion model approach to the reflected setting, we need to derive
a time-reversal for (Bt)te[O,T]- Namely, we need to characterise the evolution of (it)te[O,T] — (BT—t)te[O,T]-
It can be shown that the time-reversal of (By);c[o, 1 is also the solution to a Skorokhod problem.

Theorem 2.2.2. There exist (tt)tzo a bounded variation process and a Brownian motion (B¢);>¢ such that
t
X, =Xo+B, + [ Viogpr_.(X.)ds — k..

In addition, for any t € [0,T] we have

4— 4 =
K= [ 1g ondlkls, o= fi n(X,)dK..

The proof follows Petit (1997) which provides a time-reversal in the case where M is the positive orthant. It
is based on an extension of Haussmann & Pardoux (1986) to the reflected setting, with a careful handling of
the boundary conditions. In particular, contrary to Petit (1997), we do not rely on an explicit expression
of p; but instead use the intrinsic properties of (k:):>o. Informally, Theorem 3.2 means that the process
(Xt)tefo, 1) satisfies

dX, = Viogpr_,(X,)dt + dB, — d k., (2.6)

which echoes the usual time-reversal formula equation 2.



Implicit Score Matching



Proposition 2.3.1. Let s € C*([0,T] x R4, R?) such that for any v € OM and t > 0,
si(z) = 0. Then, there exists C > 0 such that

E[|[Vlogp, — s:l|”] = El|s||* + 2 div(se)] + C,

where E is taken over X; ~ p; and t ~ U([0,T]).

This result immediately implies we can optimize the score network using the ism loss function so long as we
enforce a Neumann boundary condition.



